An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

نویسندگان

  • María-José Ferrándiz
  • Antonio J. Martín-Galiano
  • Cristina Arnanz
  • Isabel Camacho-Soguero
  • José-Manuel Tirado-Vélez
  • Adela G. de la Campa
چکیده

We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7-31.4 kb in length and included 9-22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters

The transcriptional response of Streptococcus pneumoniae was examined after exposure to the GyrB-inhibitor novobiocin. Topoisomer distributions of an internal plasmid confirmed DNA relaxation and recovery of the native level of supercoiling at low novobiocin concentrations. This was due to the up-regulation of DNA gyrase and the down-regulation of topoisomerases I and IV. In addition, >13% of t...

متن کامل

DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression.

We show that several interacting environmental factors influence the topology of intracellular DNA. Negative supercoiling of DNA in vivo is increased by anaerobic growth and is also influenced by growth phase. The tonB promoter of Escherichia coli and Salmonella typhimurium was found to be highly sensitive to changes in DNA supercoiling. Expression was increased by novobiocin, an inhibitor of D...

متن کامل

Autoregulation of topoisomerase I expression by supercoiling sensitive transcription.

The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyr...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016